

Council Chatbots
Example Shared
Conversational AI
Architecture

1. Introduction

The Example Shared Architecture describes the possible implementation of a

conversational Artificial Intelligence platform that is shared between several

councils. This report recommends how those councils might host, test and

manage the platform.

This document is one of a group of reports resulting from the discovery research

project “Can chatbots and AI help solve service design problems?”, in

collaboration with 13 English councils.

All key project deliverables outline our findings in detail - please refer to our

individual reports for more focused insights and information:

● ROI Analysis and Market Summary | April 2019 | Council chatbots |

Torchbox

● Technology Landscape Review | April 2019 | Council chatbots | Torchbox

● User Research Summary Report | April 2019 | Council chatbots |

Torchbox

● Case Studies | April 2019 | Council chatbots | Torchbox

● Project Summary Report | April 2019 | Council chatbots | Torchbox

A blog has been published by the project lead, Neil Lawrence of Oxford City

Council. To read articles covering each stage of the project please visit the blog:

● https://localdigitalchatbots.github.io

Example Shared Conversational AI Architecture | April 2019 | Torchbox

1

https://localdigitalchatbots.github.io/

Contents
1. Introduction 2

2. Overall Design 4

2.1 Example architecture diagram 5

3. Agreed Domain NLU Model 6

4. Testing Suite and Results 7

5. Centralised hosted NLU System 7

6. Rules and Conversational Flow Engine 9

7. Standard Domain Flows 10

8. API Gateway and Webservice integration approach 11

9. Log store 11

10. Advanced Analytics Engine 12

11. Content Management System 12

12. Hosted, Embeddable or Deployable Webpage 13

13. Channel Architecture 14

13.1 Normalised internal message format 14

13.2 Web Chat Widget 15

13.3 SMS 16

13.4 Facebook Messenger 16

14. Components not excluded from the diagram 17

14.1 Human Chat Management system 17

14.2 RPA 17

14.3 IVR integration 17

Example Shared Conversational AI Architecture | April 2019 | Torchbox

2

2. Overall Design

Each council could purchase a local system to develop their own, individual

conversational Artificial Intelligence (AI) system. In this scenario knowledge

becomes siloed, regional variations in training quality become high, and costs

overall are much higher. We can see this sort of individual approach has

resulted in a wide variety of quality and styles of websites across the councils

participating in this project. Even for areas where the information provided is

nearly identical in subject (if different in content), a user’s online experience

would still be very different moving from one side of the country to another.

An individual approach also disadvantages smaller councils with less buying

power and fewer resources to optimise their systems. We can see this clearly in

the data from the study; smaller councils have recorded roughly £6.00 per call,

while larger councils record roughly £2.00 per call.

As we start to venture into conversational AI we can approach this differently to

how the adoption of web technologies occured. Instead we can choose to

collaboratively purchase and train a centralised system.

A centralised system would allow the councils to negotiate as a unit and

purchase a more secure, more scalable system, with lower usage charges, and

premium features which improve the user experience. Knowledge can be

shared, high-quality Natural Language Understanding (NLU) continually

maintained, and the costs for each individual council can be much lower.

The primary challenge in doing this is not a technical one, it is an organisational

one. Councils must agree to co-operate and then collaborate in building an

overall model for a research area that can adapt to the variety of ways of

handling the chosen area, as well as adapt to the variety of terms used across

England for that area.

Example Shared Conversational AI Architecture | April 2019 | Torchbox

3

If we can achieve that level of collaboration, what sort of system might we build

to support a first, common conversational AI technology? How would that also

allow councils to broaden out from there to build other collaborative or

individual areas of conversational AI expertise?

The diagram below represents an example model that could be investigated to

tackle this problem, with a section explaining the suggestion for each

component within it.

2.1 Example architecture diagram

Example Shared Conversational AI Architecture | April 2019 | Torchbox

4

3. Agreed Domain NLU Model

The first step in agreeing the ‘domain NLU model’ would be to define the

functions within the chosen area and produce the necessary NLU model. This

model would need to be broad enough to cover the variety of regional accents

and methods of service delivery for this area. For instance: dealing with bins in

urban areas with many users in apartments who have shared bins is very

different from a rural area, where each collection may be far apart. Council

users in Lancashire may describe their bin needs differently from those in

Brighton, however those needs, regardless of terminology or delivery method

are by-and-large the same.

The intentions of users that would be supported within the NLU domain would

need to be defined, and what represents a satisfactory outcome needs to be

established. For instance, is giving a piece of information enough, or is a backend

integration required to fetch the status of something the user is interested in, or

to submit information on their behalf. A model of the responses needing to be

configured for each possible user intention and the webservices necessary to

successfully achieve that response would be necessary

Having established the scope of the domain NLU model, training examples

supporting how users within each region speak about that domain could be

sourced, in order to train the NLU system to better understand their

requirements.

The domain NLU model would be used to train a single conversational AI

platform, but should be stored in a generic way that could be accessible to, or be

repurposed for, other platforms. Each of the leading conversational AI

platforms is trained using a very similar set of data, and the storage of this data

outside of any single tool would avoid being locked into any single provider.

Example Shared Conversational AI Architecture | April 2019 | Torchbox

5

4. Testing Suite and Results

As part of producing the NLU domain model the project could also produce a set

of training data and test suites that measure the delivered accuracy and

precision of the model using the chosen NLU platform. This measurement would

be a valuable benchmarking asset in its own right, with which any potential

technical solution in the domain area could be evaluated. It would set a

standard for how to evaluate other chatbots in other council NLU domains and

show how to provide test data sets and matching test suites in a transparent

way. As technology in this area rapidly develops and the number of providers

increases, individual councils would have a clear domain-specific benchmark

and a quality standard for transparency to compare each possible solution or

provider against.

5. Centralised hosted NLU System

This component would provide the intent classification (what action the user

wants to achieve) and the named entity extraction (the things that the user

wants to carry out the action upon).

Hosting the system could be public, cloud based hosting using a proprietary

provider, or a privately hosted open source solution. Both the open source

providers and the closed cloud based platform providers typically provide

different service levels; those aimed at single chatbot functions for small

organisations, and those aimed at larger organisations that need to host many

segregated chatbots for different functions. The premium service levels tend to

have greater security, high-availability features (for instance multi-region

deployments to prevent failure if any single region were to go down, and so

reduce latency within each geographical area), and data segregation options as

Example Shared Conversational AI Architecture | April 2019 | Torchbox

6

well as being setup to support a much wider scale of development than the

standard levels.

For instance: the hosting system might have backend log storage on segregated

virtual databases, rather than separated by user within a shared database.

Segregated virtual databases provide a slight increase in security and allows an

enterprise client to copy or reuse the whole database between projects and

environments, rather than query only their user section. This also allows easier

maintenance, many test and development environments, and the segregation of

production and test data.

Some also have end user-facing and council staff managing functionality only

available in the premium versions, for instance the ability to generate answers

from stores of documentation without explicit configuration is typically only in

the premium paid for tiers. (Long tail style functionality.)

Hosting a high quality, highly-available, automatically-scaling system for a large

number of different chatbot deployments is a complex undertaking.

Cloud-based providers regard conversational AI as one of the pivotal

applications to encourage organisations to overcome their reluctance to move

processing and hosting onto the cloud. Whilst an entirely open-source version

of a centralised platform is attractive, it should not be regarded necessarily as

the cheaper option, since the cost to establish this system at scale for multiple

councils would be significant. Utilising an existing cloud-based proprietary

platform built for this sort of scenario could be cheaper and provide a higher

quality solution. Leading cloud-based providers are continuing to invest heavily

in AI so the rate of change is fast and competition is high. Utilising one of the

leading providers should help to future proof the chosen solution. However, by

storing the training and testing data as Open Source items, mastered outside of

any one cloud solution, many of the ideals of the Government Digital Service

open source guidance can be maintained.

Example Shared Conversational AI Architecture | April 2019 | Torchbox

7

A detailed study of the two options: between keeping the domain model,

training and test data open source and deploying in a cloud hosted model, or

keeping the entire system open source and deploying in a custom, private cloud

hosted model should be conducted.

6. Rules and Conversational Flow Engine

In implementing any chatbot technology, a decision would need to be made

whether to use the chosen conversational AI platform’s rules and conversation

configuration methods or use an external solution.

If the chosen platform’s configuration method is used whilst the underlying

domain NLU model is highly transferable between technology providers, the

example flows corresponding to the NLU model would still be largely platform

dependent. So the understanding of what the user is saying could be moved

easily between different platforms, but the control of the conversation

responding to that would be more difficult to move.

If an external, open source rules engine and conversational flow configuration

method was used then both this and the domain NLU model could be reused

with any providers’ platform.

Despite the perceived advantages of being tech agnostic, we recommend

adopting the chosen platform’s in-built solution for rules and conversational

flow configuration. These platforms are rapidly iterating, and working closely

with the supplier and technical community supporting them is highly necessary.

Sticking closely to the recommended build patterns for each platform means

that, while skills are still scarce, they are easier to find and onboard than using a

custom rules and conversation configuration method. It also helps future proof

the platform, as suppliers (generally) will support upgrades to technology built

using their inbuilt/recommended tools, but if a fully external custom rules

Example Shared Conversational AI Architecture | April 2019 | Torchbox

8

engine and configuration method is used, this is unlikely to be considered as

technology providers plan their upgrades. Creating a fully open source rules

engine with good flow configuration tooling is a also a large and costly

undertaking.

7. Standard Domain Flows

Within the platform selected, alongside the agreed domain model and trained

NLU, a set of typical conversational flows to discuss and respond to each intent

should be built and designed using the chosen rules and conversational flow

engine (see above). The flows should then be matched up to a minimum set of

integrations required for each flow for the chatbot to respond. An individual

council should be able to select any or all of the flows to implement depending

on the services, and integrations they are able to provide.

For example, the result of designing and building these flows would mean that;

for the intent #replace_bin_lid there is not only a trained NLU model which

understands the user request matches that intent, but also there is a pre-trained

conversation to discuss the bin lid, ask the user for any relevant details, give

example responses and there is a specification for all the configuration that

must be done, and the webservices that must be provided to use this effectively

(i.e to actually order the new bin lid for the user).

A council could therefore deploy the full standard functionality just by

configuring the provided items: simply configure the standard responses and

connected appropriate webservices without needing to conduct any additional

NLU training or conversation flow design.

A council wanting to build new chatbots in other NLU domains would also have

access to a very high quality system and examples of good quality

implementations on which to base their work

Example Shared Conversational AI Architecture | April 2019 | Torchbox

9

8. API Gateway and Webservice

integration approach

A standard model for configuring the call to external webservices from the NLU

platform is needed, as the form of the webservices may vary from council to

council for the same underlying flow.

An API Gateway that would securely connect to external web services and both

transform different connection methods and returned fields for each council

into a standard format for the NLU system, would enable a standard model.

9. Log store

Once the system is released to the public, it’s necessary to rapidly iterate and

train the system based on real user interactions with and responses to the bot.

Training sets (of real user interactions) must be fully cleansed of all user data, so

they can be published in an open source way, and placed within an automatic

‘DevOps’ pipeline, which moves changes when they have been tested

automatically through development, test and production environments.

It is therefore necessary to store a large volume of user interactions in a secure

and separate way to the development and test systems, whereby only a small

number of specialised users have access to conduct detailed analytics and

produce the cleansed training sets which can then be distributed through many

hosted deployments.

A dedicated log storage function is required. Most of the platforms - as

described in the Technology Landscape Review - provide an option which may

Example Shared Conversational AI Architecture | April 2019 | Torchbox

10

be suitable, and allow this segregation of the production system logs to a small

number of users. This is more common in the providers providing automatic

integration points to advanced analytics engines.

10. Advanced Analytics Engine

The leading conversational AI platforms tend to provide a variety of basic

analytics and dashboards for monitoring the performance of the chatbot.

Whilst this may be sufficient for determining basic usage and performance, they

generally aren’t enough for the detailed evaluation of user reactions, or for

analysing in detail the performance of the conversational flows or NLU system.

A separate advanced analytics engine should be connected to the log store and

NLU system. Most of the leading platforms provide recommendations for, or

integrations to, advanced analytics engines.

11. Content Management System

One of the major benefits of a centralised approach would be for councils of all

sizes to have access to an advanced conversational AI platform for building

chatbots from scratch when they wished, but also to be able to implement

pre-built domain functionality without requiring local conversational AI or Data

Science skills.

To be able to make changes to pre-built content without dedicated

conversational AI skills or access to the supporting platforms, a separated

Content Management System (CMS) would be needed. Most of the

conversational AI systems have a basic CMS that is closely coupled to the AI

Example Shared Conversational AI Architecture | April 2019 | Torchbox

11

functionality, however; they tend to be not well suited to maintaining multiple

versions of responses across multiple organisations or formats.

Segregating the CMS functionality to use a modern ‘headless’ CMS system

would allow individual councils to customise rapidly all responses of the bot,

fully brand it to their needs, and to have a full content development and editorial

control process segregated from the technical implementation.

A ‘headless’ CMS system is one which can be configured and used via API to

support content models which aren’t page centric, i.e. doesn’t assume the

content will be used only to support a webpage, but supports content models

which work in other forms, such as chatbot utterances. A ‘headless’ CMS also

typically supports a traditional page centric model using the same data via a user

interface, therefore councils can have a single headless CMS each which serves

both website content and chatbot utterance needs.

A segregated system, where the CMS is housed separately to the AI platform

and connected via an API, can be used to ensure that answers supplied by a

chatbot across a council’s website, mobile app, or other integrated channel,

remain aligned. This is very important to ensure that a user doesn’t receive

different answers depending on the channel they visit. In areas that may have

quick updates or rapidly changing content, for instance bin collection days after

bad weather, it’s important that there is a simple method for changing content

and knowing it is replicated across all the places that content is displayed.

12. Hosted, Embeddable or Deployable

Webpage

To help ensure there is consistency across council webpages and that chatbot

functions are matched to the right data in the CMS system, as well as minimise

the changes required to a council website design to implement web chat

Example Shared Conversational AI Architecture | April 2019 | Torchbox

12

widgets, an embeddable, hosted, or otherwise easily deployable webpage could

be centrally provided as part of the system. This would be pre-integrated with

the CMS to provide a high quality, modern webpage with branded, matching

information across the chatbot and website, just by a configuration within the

CMS. An embedded or deployable webpage would also automatically provide

the webchat widget needed to send information from and to the chatbot while

being connected to fully configured modern web analytics so that the mixture of

usage across the website and chatbot widget could be tracked. Alternatively,

councils could design their own webpage that pulls content from the provided

headless CMS (or their own)and only use the provided page as an example of

what features they might want to support.

13. Channel Architecture

13.1 Normalised internal message format

The conversational AI system will need to use a standard message format that

defines how to process text and, if supported as part of the centralised project,

other media or rich message components such as emojis, images, videos, gifs,

buttons, option pickers, carousels, and URLs. Unfortunately the different

channels a council might want to use to interact with their users (e.g. social

media, website or app) use differing message formats. This means an internal

message format must be defined to ‘normalise’ the messages received and sent,

and channel-specific adaptors need to be implemented to convert the message

to and from the channel-specific format into the defined internal message

format.

Each adaptor needs to change the message to both undersatnd an use the

content in the best way on any given channel. Some channels support only basic

text like SMS, therefore buttons and images need to be replaced with numeric

options and alternative text. Other channels support rich content like option

Example Shared Conversational AI Architecture | April 2019 | Torchbox

13

pickers, visual cards, gifs or emojis. A single piece of content needs to be

reusable across them all in the best way for that channel to maximise the value

from the system.

Having trained the system to support text only channels and a rich messaging

channel, expanding to other channels which lie somewhere between is relatively

quick, typically requiring only a new channel adaptor and not a fundamental

rework of the underlying system.

For the initial system it’s recommended to plan for three channels. A rich web

channel using a chat widget, a text only channel requiring no smart device or app

install like SMS, and a channel which uses a free social platform user interface

and is close to any council social media presence.

Pre-built versions of all of these channel widgets or channel user interfaces are

available, which allow customisation of the widget’s look and feel and so

removes the need to build a custom one. For example, the Facebook messenger

phone and web app already exist and are customisable. ‘Out of the box’ Web 1

Chat widgets are also readily available. Whilst a custom user interface for all of

these could be rebuilt using the underlying APIs or messaging standard, it is not

recommended not to invest in rebuilding the end channel user interfaces, but

instead invest in training the conversational AI system to utilise them in the

most effective way.

For an initial launch, the example system could support the following channels:

● Web Chat Widget

● SMS

● Facebook Messenger

Each channel is described further below.

1
https://blog.messengerdevelopers.com/https-blog-messengerdevelopers-com-how-to-customize-the-c
ustomer-chat-plugin-336b6b60ca3

Example Shared Conversational AI Architecture | April 2019 | Torchbox

14

13.2 Web Chat Widget

A modern webchat widget from an external hosted source which supports rich

content and can be easily implemented on any webpage using a small amount of

javascript and customisation. For example, here is the Javascript to implement

the Intercom.io webchat widget and is similar to the way Facebook, or

LivePerson or many other hosted configurable UIs are added to websites.

<script>

 var APP_ID = "APP_ID";

 window.intercomSettings = {

 app_id: APP_ID

 };

</script>

<script>(function(){var w=window;var ic=w.Intercom;if(typeof

ic==="function"){ic('reattach_activator');ic('update',w.intercomSettings);}else{var

d=document;var

i=function(){i.c(arguments);};i.q=[];i.c=function(args){i.q.push(args);};w.Intercom

=i;var l=function(){var

s=d.createElement('script');s.type='text/javascript';s.async=true;s.src='https://wi

dget.intercom.io/widget/' + APP_ID;var

x=d.getElementsByTagName('script')[0];x.parentNode.insertBefore(s,x);};if(w.attachE

vent){w.attachEvent('onload',l);}else{w.addEventListener('load',l,false);}}})();</s

cript>

13.3 SMS

SMS doesn’t require a smartphone or an app installation. Supporting it in initial

design ensures that full natural languages are supported, and that the system

can be operated using text only. Whilst a number that typically falls within a

users messaging allowance can be provided so it doesn’t cost the user to

message the council, each SMS incurs a charge on top of the NLU system usage

for the council to send each response. Central procurement of SMS in bulk

Example Shared Conversational AI Architecture | April 2019 | Torchbox

15

https://widget.intercom.io/widget/
https://widget.intercom.io/widget/

provides for discounts and cost efficiencies based on both volume and for

committed monthly minimums.

13.4 Facebook Messenger

Council services are widely discussed on a variety of social media platforms.

Supporting at least one of these platforms brings AI-enabled advice nearer to

where people discuss the problems they face. These channels don’t charge per

usage and support rich messaging. Many phone users will have the required

apps pre-installed allowing for instant usage with rich messaging features.

14. Components not excluded from the

diagram

A variety of other components can be useful when considering a conversational

AI platform that were not included on the example architecture diagram. When

looking at next stages implementing some of the following may be of use:

14.1 Human Chat Management system

If the bot is going to have the option to handover within the chat to human user,

it’s recommended to include a human chat centre management system. The bot

should be trained to summarise and handover to a human operative when a bot

interaction is not successful or not the best solution for that user or topic.

How necessary and what type of human handover is required depends on the

domain of knowledge tackled and the coverage and quality of the bot training.

Example Shared Conversational AI Architecture | April 2019 | Torchbox

16

14.2 RPA

If a council has multiple manual steps without webservices a Robotic Process

Automation (RPA) system may be useful for recording and replacing necessary

human interactions and wrapping them in a suitable webservice.

14.3 IVR integration

To achieve high levels of call deflection in general it will be required to integrate

into any existing call centre interactive voice response (IVR) system to either

make users aware of the bot service, or redirect them to the bot service

depending on how firmly the council wishes to steer the user.

Example Shared Conversational AI Architecture | April 2019 | Torchbox

17

